मेंसुरेशन (क्षेत्रमिति) के सभी फार्मूला

सम्पूर्ण गणित का सूत्र (Math Formula Hindi mein) याद रखना कठिन हो सकता है। इसीलिए हमने सिर्फ आपके लिए मैथ्स फार्मूला (Math Formula Hindi me) की एक विशाल सूची बनाई है। जब भी आपको किसी गणित के सूत्र (Math Formula Hindi mein) की आवश्यकता हो तो आप इस सूची का उपयोग एक शीट के रूप में कर सकते हैं।

त्रिभुज के सूत्र

  1. त्रिभुज का क्षेत्रफल – 1/2 × आधार × उचाई
  2. त्रिभुज का परिमाप – त्रिभुज के तीनों भुजाओं का योग।
  3. त्रिभुज का क्षेत्रफल – √s(s-a)(s-b)(s-c)

त्रिभुज के प्रकार एवं उनके क्षेत्रफल

समद्विबाहु त्रिभुज: वह त्रिभुज जिसकी दो भुजाएँ बराबर हो समद्विबाहु त्रिभुज  (Isosceles Triangle) कहलाता है। समद्विबाहु त्रिभुज के सूत्र नीचे दिए गए हैं-

  • समद्विबाहु त्रिभुज का क्षेत्रफल, A = a / 4 b √ (4b² – a²)
  • समद्विबाहु त्रिभुज का शीर्षलम्ब = a / 4 b √ (4b² – a²)
  • परिमाप,  P = 2a + b

विषमबाहु त्रिभुज (स्केलीन ट्रायंगल)

विषमबाहु त्रिभुज एक ऐसा त्रिभुज जिसकी तीनों भुजाएं असमान लंबाई की होती हैं। 

विषमबाहु त्रिभुज के सूत्र

  • विषमबहु त्रिभुज का क्षेत्रफल, A =√ [ s(s – a)(s – b)(s – c) ]
  • दुसरें रूप में, A = ½ × आधार × ऊँचाई
  • अर्धपरिधि P = ½ ( a + b + c )

समकोण त्रिभुज (राइट एंगल ट्रायंगल)

वह त्रिभुज जिसके तीनों भुजाएं समान होती हैं और प्रत्येक कोण 60° का होता है।

समकोण त्रिभुज का सूत्र

  • समकोण त्रिभुज का क्षेत्रफल,  A = ½ × आधार × ऊँचाई
  • समकोण समद्विबाहु त्रिभुज का परिमाप = (2 + √2) × भुजा
  • समकोण समद्विबाहु त्रिभुज का कर्ण = (√2) × भुजा
  • समकोण समद्विबाहु त्रिभुज का क्षेत्रफल = ½ × भुजा2

समबाहु त्रिभुज (इक्विलैटरल ट्रायंगल)

समबाहु त्रिभुज  बहुत त्रिभुज होता है जिसकी सभी भुजाएं बराबर होती है|

समबाहु त्रिभुज का सूत्र

  • समबाहु त्रिभुजा का क्षेत्रफल = (√3)/4 × भुजा2
  • समबाहु त्रिभुज का शीर्षलम्ब = (√3)/4 × भुजा
  • परिमाप = 3 × भुजा

आयत : आयत वह चतुर्भुज होता है जिसकी आमने-सामने की भुजाएं समान हो तथा प्रत्येक कोण समकोण (90º) के साथ विकर्ण भी समान होते हैं।

  • आयत का क्षेत्रफल – लम्बाई × चौड़ाई
  • आयत का परिमाप – 2 × ( लम्बाई + चौड़ाई )
  • आयत का विकर्ण- √( लंबाई 2+ चौडाई 2 ) 

वर्ग: उस चतुर्भुज को वर्ग कहते हैं, जिसकी सभी भुजाएं समान व प्रत्येक कोण समकोण(90°) है। 

  • वर्ग का क्षेत्रफल – भुजा × भुजा (a2) 
  • वर्ग का परिमाप – 4 × भुजा  (4a) 
  • वर्ग का विकर्ण – भुजा × √2
  • भुजा- √ क्षेत्रफल
  • वर्ग का क्षेत्रफल – ½ × विकर्णों का गुणनफल 

समलम्ब चतुर्भुज: जिस चतुर्भुज की सम्मुख भुजाओं का केवल एक युग्म समान्तर हो, उसे समलम्ब चतुर्भुज कहते है|

समलम्ब चतुर्भुज (ट्रापेज़ोइड फार्मूला) का सूत्र

  • समलम्ब चतुर्भुज का क्षेत्रफल= ½ (समान्तर भुजाओं का योग x  ऊंचाई)

      = ½ (समान्तर चतुर्भुज का क्षेत्रफल)
= ½ (आधार x संगत ऊंचाई)

  • परिमाप, P = a + b+ c + d

समचतुर्भुज : समचतुर्भुज एक ऐसी समतल आकृति होती है जिसकी चारों भुजाएं समान होती हैं।

सम चतुर्भुज (रोम्बस) फार्मूला

  • ∠A + ∠B + ∠C + ∠D = 360°
  • विषमकोण चतुर्भुज का क्षेत्रफल = ½ × दोनों विकर्णों का गुणनफल  
  • समचतुर्भुज की परिमाप = 4 × एक भुजा
  • समचतुर्भुज में => (AC)² + (BD)² = 4a²

चक्रीय चतुर्भुज (साइक्लिक क्वाड्रीलेटरल) का फार्मूला

  • ∠A + ∠C = 180° 
  • ∠B + ∠D = 180°
  • क्षेत्रफल = √[s(s-a) (s-b) (s – c) (s – c)]
  • परिमाप, S = ½ ( a + b + c + d )

बहुभुज (पोलीगोन) का फार्मूला

  • n भुजा वाले चतुर्भुज का अन्तः कोणों का योग = 2(n -2) × 90°
  • समबहुभुज के प्रत्येक अंतः कोण = (n – 2) / 2 × 180°
  • n भुजा वाले बहुभुज के बहिष्कोणों का योग = 360°
  • बहुभुज के कुछ अंतः कोणों का योग = (n – 2) × 180°
  • n भुजा वाले समबहुभुज का प्रत्येक अन्तः कोण = [2(n – 2) × 90°] / n
  • बहुभुज की परिमिति = n × एक भुजा
  • नियमित षट्भुज का क्षेत्रफल = 6 × ¼√3 (भुजा)²
  • n भुजा वाले समबहुभुज का प्रत्येक भहिष्यकोण = 360°/n
  • नियमित षट्भुज का क्षेत्रफल = 3√3×½ (भुजा)²
  • सम षट्भुज की भुजा = परिवृत्त की त्रिज्या
  • नियमित षट्भुज की परिमति = 6 × भुजा
  • n भुजा वाले नियमित बहुभुज के विकर्णो की संख्या = n(n – 3)/2

वृत्त (सर्किल) का फार्मूला

  • वृत्त का क्षेत्रफल = πr²
  • वृत्त का व्यास = 2r
  • वृत्त की परिधि = 2πr
  • वृत्त की परिधि = πd
  • वृत्त की त्रिज्या = √व्रत का क्षेत्रफल/π
  • वृताकार वलय का क्षेत्रफल = π (R2 – r2)
  • अर्द्धवृत्त की परिधि = ( π r  + 2 r )
  • अर्द्धवृत्त का क्षेत्रफल = 1/2πr²
  • त्रिज्याखण्ड एवं वृत्तखंड का फार्मूला
  • त्रिज्याखण्ड का क्षेत्रफल = θ/360° × πr²
  • चाप की लम्बाई = θ/360° × 2πr
  • त्रिज्याखण्ड की परिमिति = 2r + πrθ/180°
  • वृतखण्ड का क्षेत्रफल = (πθ/360° – 1/2 sinθ)r²
  • वृतखण्ड की परिमिति = (L + πrθ)/180° , जहाँ L = जीवा की लम्बाई

घन (क्यूब) का फार्मूला

  • घन का आयतन = भुजा × भुजा × भुजा = a3
  • घन का परिमाप = 4 a²
  • पार्श्वपृष्ठ का एक किनारा = √ ( पार्श्वपृष्ठ का क्षेत्रफल / 4 )
  • घन का एक किनारा = 3√आयतन
  • घन का एक किनारा = √ (सम्पूर्ण पृष्ठ का क्षेत्रफल / 6 )
  • घन के सम्पूर्ण पृष्ठ का क्षेत्रफल = 6a²
  • घन का विकर्ण = √3 × भुजा

घनाभ (क्युबॉइड) का फार्मूला

  • घनाभ का आयतन =  l × b × h
  • घनाभ का परिमाप = 2(l + b) × h
  • घनाभ के सम्पूर्ण पृष्ठ का क्षेत्रफल = 2(lb + bh + hl)
  • घनाभ का विकर्ण = √(l² + b² + h²)
  • घनाभ की ऊँचाई = आयतन / ( लम्बाई × चौड़ाई )
  • घनाभ की चौड़ाई = आयतन / ( लम्बाई × ऊँचाई )
  • कमरें के चारों दीवारों का क्षेत्रफल = 2h ( l + b )
  • ढक्कनरहित टंकी का क्षेत्रफल = 2h ( l + b ) + lb
  • छत या फर्श का क्षेत्रफल = लम्बाई × चौड़ाई

बेलन (सिलिंडर) का फार्मूला

  • बेलन का आयतन = πr2h
  • बेलन की ऊँचाई = आयतन / πr2
  • लम्बवृतीय बेलन की त्रिज्या = √ ( आयतन / πh)
  • खोखले बेलन में लगी धातु का आयतन = πh (R2 – r2 )
  • बेलन का वक्रपृष्ठ का क्षेत्रफल = 2πrh
  • बेलन का सम्पूर्ण पृष्ठ का क्षेत्रफल = 2πr ( h + r )
  • लम्बवृतीय बेलन की ऊँचाई = (बेलन का सम्पूर्ण पृष्ठ का क्षेत्रफल / 2πr) – r
  • लम्बवृतीय बेलन का आधार का क्षेत्रफल =  πr2

शंकु (कोण) का सूत्र

  • शंकु का आयतन = 1/3 πr2h
  • लम्बवृतीय शंकु की तिर्यक ऊँचाई = √ ( h2 + r2 )
  • शंकु की ऊँचाई = √ (l2 – r2 )
  • शंकु की आधार की त्रिज्या = √ (l2 – h2 )
  • शंकु के वक्र पृष्ठ का क्षेत्रफल = πrl
  • लम्बवृतीय शंकु के सम्पूर्ण पृष्ठ का क्षेत्रफल = πr ( l + r )
  • शंकु का आधार का क्षेत्रफल = πr2

गोला (स्फीयर) का फार्मूला

  • गोले का वक्रपृष्ठ का क्षेत्रफल = 4πr2
  • गोला का आयतन = 4/3 πr3
  • गोलीय शेल का आयतन = 4/3 π ( R3 – r3 )
  • गोलीय शेल के सम्पूर्ण पृष्ठ का क्षेत्रफल = 4/3 π(R2- r2 )
  • घन ने सबसे बड़े गोले का आयतन = 1/6 a3
  • घन में सबसे बड़े गोले का पृष्ठीय क्षेत्रफल = πr 2
  • गोले में सबसे बड़े घन की एक भुजा = 2R / √3
  • अर्द्ध गोला के वक्रपृष्ठ का क्षेत्रफल = 2 πr2
  • किसी अर्द्ध गोला के सम्पूर्ण पृष्ठ का क्षेत्रफल = 3 πr2
  • अर्द्ध गोला का आयतन = 2/3 πr3
Scroll to Top